
01QZP – Ambient Intelligence

Lab 4 – Using Databases (SQLite) with Python

Luigi De Russis, Teodoro Montanaro

1 A possible solution to the exercise can be found at https://github.com/AmI-2017/python-lab3 (AmITaskListBot.py).

LAB 4 – USING DATABASES (SQLITE) WITH

PYTHON

EXERCISE 1 – CREATE A SQLITE DATABASE

Perform the following actions.

1. Using SQLiteStudio, create a sqlite database (task_list.db).

2. Create the “task” table with the following columns:

 id_task: it will contain an (auto generated) integer value that represents the unique identifier of each

task;

 todo: it will contain the text of each task;

3. Insert (by hand) in the just created database all the tasks contained in the “task_list.txt” file. The file can be

downloaded at the following link: https://goo.gl/6EFKnn .

Suggestions:

1. SQLiteStudio is portable, so it does not need any installation and can be downloaded at the following

link: https://sqlitestudio.pl/index.rvt?act=download

EXERCISE 2 – TELEGRAM BOT: USE THE DATABASE INSTEAD OF THE TEXT FILE

Modify the Telegram bot developed in the previous laboratory1 to increasingly substitute the text file with the database.

The following exercises will incrementally re-implement existing features so that the script will use the database instead of

the file

Exercise 2 - part 1 – /showTasks: Show all existing tasks

Show all existing tasks, sorted in alphabetic order reading from the database: disable all existing options except the

"/showTasks" one and modify the right method to read from the database (instead of reading from the text file).

Consequently, the Telegram bot will accept only the following command

 /showTasks

and every time the user selects it, the program will show the tasks getting them from the database.

https://github.com/AmI-2017/python-lab3
https://goo.gl/6EFKnn
https://sqlitestudio.pl/index.rvt?act=download

01QZP – Ambient Intelligence

Lab 4 – Using Databases (SQLite) with Python

Luigi De Russis, Teodoro Montanaro

Suggestion:

When you prepare the sql query, you should use placeholders to specify parameters. Look at the

following documentation to understand what is the right placeholder for sqlite databases:

https://docs.python.org/3/library/sqlite3.html

Exercise 2 - part 2 – /newTask: Add a new task

Add a new task to the “task_list.db” database.

Consequently, the Telegram bot will accept the following commands:

 /showTasks

 /newTask <task to add>

and every time the user selects the "/newTask" one, the program will add the task to the database (instead of

adding it to the file).

Exercise 2 - part 3 – /removeAllTasks: Remove existing

Remove all the existing tasks that contain a provided string from the database.

Consequently, the Telegram bot will accept the following commands:

 /showTasks

 /newTask <task to add>

 /removeAllTasks <substring to use to remove all the tasks that contain it>

and every time the user selects the "/removeAllTasks" command, the program will remove the tasks from the

database.

https://docs.python.org/3/library/sqlite3.html
https://docs.python.org/3/library/sqlite3.html

